Applied nutritional investigation

Revisiting nutrition backlash: Psychometric properties and discriminant validity of the nutrition backlash scale

Jakob D. Jensen Ph.D.\textsuperscript{a,b,*}, Elizabeth A. Giorgi M.F.A.\textsuperscript{a}, Jennifer R. Jackson M.A.\textsuperscript{a}, Julia Berger M.A.\textsuperscript{a}, Rachael A. Katz M.S.\textsuperscript{a}, Amy R. Mobley Ph.D., R.D.\textsuperscript{c}

\textsuperscript{a} Department of Communication, University of Utah, Lake City, Utah, United States
\textsuperscript{b} Huntsman Cancer Institute, Salt Lake City, Utah, United States
\textsuperscript{c} Department of Health Education and Behavior, University of Florida, Gainesville, Florida, United States

ARTICLE INFO

Article History:
Received 22 November 2019
Received in revised form 15 June 2020
Accepted 15 July 2020

Keywords:
Nutrition backlash
Cancer information overload
Cancer worry
Cancer fatalism

ABSTRACT

Objectives: Nutrition backlash is a disposition defined by negative feelings about dietary recommendations. Past research has measured nutrition backlash using the nutrition backlash scale (NBS) and found that it is negatively related to the consumption of fruits and vegetables. The aim of this study was to examine several aspects of the NBS, including factor structure, discriminant validity, and relationship to demographic characteristics and health behaviors.

Methods: Adults were recruited to participate in two studies. Study 1 (N = 480) included measures of nutritional backlash, information overload, worry, fatalism, and nutrition-related behaviors. Study 2 (N = 399) was a follow-up that examined the factor structure of the NBS in a separate sample.

Results: In study 1, a six-item version of the NBS was found to be a good fit for the data and discriminant from overload, worry, and fatalism. NBS was higher for those with less education, non-white participants, and men. Individuals with higher backlash were less likely to look at nutritional labels and to use sunscreen. Study 2 confirmed the factor structure from study 1.

Conclusions: A six-item version of the NBS was found to be reliable, discriminant from related measures, higher in underserved groups (less-educated, non-white, and male participants), and related to nutrition label use.

© 2020 Elsevier Inc. All rights reserved.

Keywords:
Nutrition backlash
Cancer information overload
Cancer worry
Cancer fatalism

Introduction

At the beginning of the 21st century, Goldberg\textsuperscript{[1]} argued that a pressing issue for nutrition was how audiences would "respond to mass health communication." She noted that there was a need for nutrition research that "expanded understanding and respect for the multiple factors that drive human behavior" and recognition that "one of those factors is not necessarily knowledge." Even though nutrition recommendations had remained stable, Goldberg pointed out that the public seemed confused, frustrated, and convinced that “nutritionists were always changing their minds.”

Although 2 decades have passed, Goldberg’s concerns remain at the forefront of nutrition science. Given the lack of progress at promoting healthy lifestyles, Hill\textsuperscript{[2]} stressed the need for more nutrition research on perception, behavior change, and motivation. Other researchers have echoed this call\textsuperscript{[3]}, with Rowe\textsuperscript{[4]} adding that nutrition research needed to move beyond the simple communication of findings—referred to as the deficit model—toward models and frameworks that considered individual beliefs and perceptions of nutrition communication. Indeed, the communication environment has become, if anything, even more complex and challenging for nutrition science; research has shown that health-related news rarely has an author or clearly identifiable source\textsuperscript{[5]}, and that traditional news reporting practices can cultivate negative audience response such as beliefs that dietary behaviors do not affect health outcomes (i.e., fatalistic thinking) and negative perceptions of nutrition recommendations (i.e., nutrition backlash\textsuperscript{[6,7]}).
Responding to these calls, the present study examined nutrition backlash and its relationship with fatalism, information overload, and nutrition-related behaviors.

Nutrition backlash

Consumer interest in health, fitness, and dietary information is high, with health and medical coverage comprising the majority of science news in U.S. media [8,9]. However, although interest may be high, data from the National Health and Nutrition Examination Survey (NHANES) shows that Americans consistently struggle to meet dietary recommendations, a situation that is especially pronounced for low-income families [10–12].

One of the reasons for this discrepancy may lie in the complexities of communicating nutrition research to the public. Individuals interested in nutrition information must navigate a diverse array of sources, the rapid pace of nutrition research and guideline updates, and the sometimes contradictory framing of nutrition research by the media, all of which contribute to a landscape of public confusion about dietary recommendations [13].

Patterson et al. [14] proposed nutrition backlash, caused by message confusion, as a possible mechanism underlying public dismissal of dietary recommendations. Nutrition backlash is an averse disposition that refers to “a broad gamut of negative feelings about dietary recommendations, which could include skepticism, anger, guilt, worry, fear, and helplessness,” and which result from “inconsistent and confusing diet and health messages” [14]. In Patterson et al.’s study, nutrition backlash correlated with lower levels of fruit and vegetable consumption, and higher levels of fat consumption. Subsequent research has drawn on Patterson et al.’s construct to examine the role of conflicting media coverage in public acceptance of nutrition recommendations [15,16], and to inform research into other health arenas where conflicting media reports may lead to confusion or dismissal of health recommendations [17,18]. Concerning the latter, nutritional backlash has been used to study reactions to cancer prevention messages, serving as an outcome alongside cancer-related constructs such as cancer information overload (CIO), cancer worry, and cancer fatalism [6,7,19].

The present study advances our understanding of nutrition backlash by examining the following:

- The psychometric qualities of Patterson et al.’s [14] scale;
- Its relationship to demographic variables and health outcomes;
- and
- Discriminant validity from similar constructs that also measure public skepticism in the face of confusing health messages.

In particular, this study considered discriminant validity of nutrition backlash from three other constructs also linked to contradictory or confusing public health messages: CIO (feeling overwhelmed by cancer information), cancer worry (the fear of developing cancer), and cancer fatalism (the belief that nothing can be done to prevent or treat cancer) [7,20,21]. These questions are explored across two studies with U.S. adults.

Study 1

Study 1 examined the psychometric qualities of the NBS and compared it to the constructs of overload, worry, and fatalism. The present study also examined the relationship between backlash and health behaviors. Patterson et al. [14] observed that backlash was negatively related to fruit and vegetable consumption. Given the importance of fruit and vegetable consumption, and identifying underlying correlates [22], we replicated this analysis. Additionally, we examined the relationship between backlash and food label use. Researchers have identified food labels as a key source of health information for consumers [23], and a driver of healthier food selections [24–27]. Important to the present study, past work has suggested that food-related motivation might be a key moderator for meaningful label use [28,29]. Thus, understanding whether backlash is related to label use advances the understanding of both. Finally, we explored whether nutritional backlash is related to other health behaviors, notably other behaviors that prevent cancer. The goal was to identify whether nutritional backlash is isolated to the context of nutrition or if it represents negative feelings about a larger domain. For example, CIO, cancer worry, and cancer fatalism all focus on cancer in general rather than a particular type of cancer or behavioral domain. Nutrition backlash is conceptualized as nutrition-specific, but perhaps it is representative of a larger construct such as health recommendation backlash or cancer prevention backlash. As a first step in this direction, we examined the relationship between backlash and sunscreen/tanning behaviors [30]. Sunscreen/tanning behaviors are an ideal non-nutrition behavior for this analysis as there is no direct nutrition component and researchers often include both fruit/vegetable consumption and sun sunscreen/tanning in studies focused on cancer prevention behaviors in general [31].

Method

Design

Adults (>18 y of age) were recruited at a large U.S. shopping center (N = 480). The research team had a long table and 12 chairs set up in a central intersection of the shopping center. Banners advertised the study opportunity and the corresponding incentive ($10 gift cards). Participants approached the research team, were informed about the study, and, if they opted to participate, sat down at the table and completed a paper survey instrument. After completing the survey, participants were provided with a paper debriefing, an opportunity to answer questions, and their gift card.

The protocol was approved and monitored by a university institutional research board (IRB). The IRB approved of the location site, banner recruitment method, gift card compensation, and data collection procedures. After data was collected, the lead author deidentified each survey, and then another member of the research team manually entered data into SPSS for analysis. The data is available via Mendeley at http://dx.doi.org/10.17632/n9htr98tpt2.2.

Participants

More women (64.8%) participated than men (35.2%). Participants ranged from 18 to 84 y of age, with a mean age of 35.31 y (SD 15.75). The participants were predominantly white: 76.1% white; 8.7% black; 4.4% Hispanic, Latino, or Spanish origin; 4.6% Asian or Pacific Islander, 1.2% American Indian or Native American; and 4% described themselves as mixed race or other (participants could check more than one category). Regarding education level, 37.6% had completed no higher than a 12th-grade education and 60.5% completed at least a the 12th grade (1.9% missing). The mean household income was $49,948.47 (SD $73,241.83). Participants political ideology was measured on a scale ranging from 1(exremely liberal) to 7(exremely conservative; mean = 4.17; SD = 1.51). The mean household income was $49,948.47 (SD $73,241.83). Participants political ideology was measured on a scale ranging from 1(exremely liberal) to 7(exremely conservative; mean = 4.17; SD = 1.51). Participants political ideology was measured on a scale ranging from 1(exremely liberal) to 7(exremely conservative; mean = 4.17; SD = 1.51). Participants political ideology was measured on a scale ranging from 1(exremely liberal) to 7(exremely conservative; mean = 4.17; SD = 1.51). Participants political ideology was measured on a scale ranging from 1(exremely liberal) to 7(exremely conservative; mean = 4.17; SD = 1.51). Participants political ideology was measured on a scale ranging from 1(exremely liberal) to 7(exremely conservative; mean = 4.17; SD = 1.51). Participants political ideology was measured on a scale ranging from 1(exactly liberal) to 7(exactly conservative; mean = 4.17; SD = 1.51).

Measures

Nutrition backlash. To assess negative feelings (e.g., skepticism, worry, guilt, fear, anger, and helplessness) associated with dietary recommendations, we used the 11-item NBS developed by Patterson et al. [14]. Each item had four response options (strongly disagree to strongly agree), with higher scores equating to greater backlash. Examples of items include, “I am annoyed when there are no healthful food choices at a restaurant,” and “Scientists really don’t know whether a low-fat diet is good for you.” Previously, the NBS was found to be a reliable instrument (Cronbach’s α = 0.77) [14]. Psychometric properties of the NBS in the current studies are reported in the results sections.

Cancer information overload. CIO was measured using an 8-item scale from Jensen et al. [20]. Each item had four response options (strongly disagree to strongly agree), with higher scores equating to greater information overload (mean = 2.46, SD = 0.50, Cronbach’s α = 0.81). Sample items included, “There are so many different recommendations about preventing cancer, it’s hard to know which ones to follow,” and “It has gotten to the point where I don’t even care to hear new information about cancer.”
Concerning the latter, an item should be retained only if it loads at or above their parallel analysis cutoff points. In this case, parallel analysis (11 items, n = 481) suggested the following cutoff points for eigenvalues: 1.32 (factor 1), 1.22 (factor 2), 1.17 (factor 3). Thus, only the first two factors have eigenvalues above their parallel analysis cutoff points.

An examination of the pattern structure revealed that the first factor was items back7–back11. For the most part, those items referred to beliefs about low-fat diets. The second factor consisted of items back1–back3. Those items are reverse-coded, which raises concerns about the veracity of this factor. Factor 3 included back4–back6. Two of those items (back4 and back5) seemed to refer to tertiary beliefs that were not focused directly on nutrition backlash. Yet, the third item in that factor (back6) does seem relevant to nutrition backlash.

Given concerns about factors 2 and 3, we dropped five items (back1–back5) and conducted a follow-up factor analysis on the remaining six items (back6–back11; henceforth NBack6). NBack6 had one factor with an eigenvalue >1 (Table 1). However, Howard [38] argued that the “>1” eigenvalue rule should be replaced with parallel analysis (for more details, see Patil et al. [39]). Parallel analysis establishes eigenvalue cutoff points based on the number of variables to be analyzed and the sample size. In this case, parallel analysis (11 items, n = 481) suggested the following cutoff points for eigenvalues: 1.32 (factor 1), 1.22 (factor 2), 1.17 (factor 3). Thus, only the first two factors have eigenvalues above their parallel analysis cutoff points.

An examination of the pattern structure revealed that the first factor was items back7–back11. For the most part, those items referred to beliefs about low-fat diets. The second factor consisted of items back1–back3. Those items are reverse-coded, which raises concerns about the veracity of this factor. Factor 3 included back4–back6. Two of those items (back4 and back5) seemed to refer to tertiary beliefs that were not focused directly on nutrition backlash. Yet, the third item in that factor (back6) does seem relevant to nutrition backlash.

Given concerns about factors 2 and 3, we dropped five items (back1–back5) and conducted a follow-up factor analysis on the remaining six items (back6–back11; henceforth NBack6). NBack6 had one factor with an eigenvalue >1 (2.75) which explained 45.79% of the variance. Parallel analysis suggested that a factor should be retained for this design (six items, n = 481) if the eigenvalue was >1.21. Thus, the single-factor model was retained. Loadings within that factor were all >0.40 [38].

Reliability analysis revealed that both models (NBack11, NBack6) had identical reliability (Cronbach’s α = 0.76). In light of the conceptual clarity of the six-item model, and equivalent reliability, we opted to use NBack6 as the primary model for this analysis; however, we also included NBack11 in bivariate analysis so that readers can compare the two.
and men. Individuals with higher backlash were less likely to look at nutrition labels and to use sunscreen.

There were some differences between NBack6 and NBack11. The latter was negatively related to CWF and CWS. It was unrelated to race and negatively correlated with fruit and vegetable consumption.

**Discriminant analysis**

Discriminant validity assess whether constructs are distinct [40]. We assessed discriminant validity using the heterotrait–monotrait (HTMT) method [40]. SmartPLS software was used to calculate HTMT [41]. Using a threshold of 0.85 [40,42], NBack6 was significantly different than CIO, CWS, CWF, CFP, and CFT (Table 3). Of note, the other variables were also discriminant from one another.

**Hierarchical regression**

Past research has shown that nutrition backlash is related to dietary intake, even after controlling for demographic characteristics [14]. Three hierarchical linear regressions were conducted and blocked as follows: demographic characteristics (block1), related constructs (block 2), and NBack6 (block 3). The results are reported in Table 4. NBack6 was not significantly related to fruit ($R = 0.27$, $R^2$ change $= 0.001$, $F_{\text{change}} \ [1374] = 0.36$, $P = 0.55$) or vegetable consumption ($R = 0.30$, $R^2$ change $= 0.001$, $F_{\text{change}} \ [1374] = 0.39$, $P = 0.53$), but it was significantly related to look at labels ($R = 0.45$, $R^2$ change $= 0.029$, $F_{\text{change}} \ [1372] = 13.67$, $P < 0.001$). Backlash explained 2.9% of the variance in look at labels above and beyond demographic characteristics and other related constructs. Backlash was negatively related to fruit and vegetable consumption such that individuals with higher backlash reported less fruit and vegetable consumption.
Study 2

Study 1 identified six items that loaded on a single factor. Study 2 sought to confirm that factor structure in a separate sample recruited from different locations.

Method

Design

Adults (≥18 y of age) were recruited from seven large U.S. shopping centers (N = 399). Recruitment was identical to study 1. The protocol was approved and monitored by a university IRB. After data collection, the lead author deidentified all surveys and another member of the research team entered the data into SPSS for analysis. The data is available via Mendeley at http://dx.doi.org/10.17632/2tqygp8h64.2.

Participants

More women (66.2%) participated than men (31.6%; 2.2% missing). Participants ranged from 18 to 84 y of age, with a mean age of 36.68 y (SD = 16.33). The participants were predominantly white: 83.2% white; 11.7% black; 3.1% Hispanic, Latino, or Spanish origin; 1% Asian or Pacific Islander; 1.8% American Indian or Native American; and 2.3% described themselves as “other” (participants could check more than one category). The breakdown of education levels was 55.4% had no more than a 12th-grade education and 41.6% completed at least 12th grade (3.3% missing). The mean household income was $51,769.46 (SD = $42,954.35).

Measures

Nutrition backlash was measured using the 11 items described in study 1.

Results

Confirmatory factor analysis is sensitive to multivariate non-normality, and past research has shown that most data sets are non-normal [43]. That is, although researchers are taught to expect multivariate normality, the reality is that most data sets violate this assumption. Consistent with this research, the nutrition backlash items exhibited significant multivariate abnormality, skewness = 9.64, z score = 14.12, P < 0.001, and kurtosis = 175.49, z score = 12.89, P < 0.001.

If a data set is non-normal, researchers should use the asymptotic covariance matrix when conducting a CFA to calculate a Satorra–Bentler (S-B) χ² [44]. Lisrel 9.30 was used to conduct a CFA adjusting for multivariate non-normality. Six indicators were used to assess model fit: S-B χ², CFI, root mean square error of approximation (RMSEA), standardized root mean residual (SRMR), and Model Akaike Information Criterion (AIC) [42,45–47].

Confirmatory factor analysis

Study 1 supported a six-item model for measuring nutrition backlash (NBack6), but Patterson et al. [14] originally advocated for an 11-item model (NBack11). As a first step, we assessed NBack11 (1 latent variable and 11 indicators). NBack11 was not a good fit for the data, S-B χ² (44, n = 481) = 327.56, P < 0.001; CFI = 0.84, RMSEA = 0.12 (90% confidence interval [CI], 0.10–0.13), SRMR = 0.09, Model AIC = 371.56.

Given the lack of fit, we next tested NBack6. Model fit was better, but still below standards: S-B χ² (9, n = 481) = 39.60, P < 0.001, CFI = 0.97, RMSEA = 0.08 (90% CI, 0.06–0.11), SRMR = 0.05, Model AIC = 63.60.

An examination of the modification indices revealed that model fit for NBack6 would be enhanced by allowing error-term correlations for items back10 and back11. Bentler [48] noted that correlated error terms should be explained, although he also argued that they may be unavoidable. In this case, the correlation is logical for back10 and back11 as the items contain similar language (e.g., “low fat”) and were the last two items in the battery (i.e., item order was not randomized), which likely led to spurious correlations independent of the latent construct. A revised model was tested, allowing for an error-term correlation between back10 and back11. The revised model was an excellent fit for the data, S–B χ² (8, n = 481) = 7.50, P = 0.48, CFI = 1.00, RMSEA = 0.00 (90% CI, 0.00–0.05), SRMR = 0.02, Model AIC = 33.50 (Fig. 1). Thus, CFA supported NBack6.

Discussion

A six-item version of the NBS (Nback6) was demonstrated to be reliable, and scores were higher in less-educated, non-White, and male participants. Backlash was also discriminant from overload, worry, and fatalism, and related to nutrition label and sunscreen use. Therefore, the present analysis confirmed nutrition backlash as a distinct construct that is related to demographic variables and can explain variance in health behaviors.

Moreover, the present analysis demonstrated that nutrition backlash is related to meaningful health behaviors and may explain some demographic variance in adoption or dismissal of health recommendations. Nutrition backlash was higher in male, low-income, and non-White participants, which makes sense given that the NHANES survey has shown that these demographic variables are associated with poorer adoption of nutrition recommendations [10,49]. Additionally, participants with higher levels of nutrition backlash were less likely to consult food labels. Food label use is associated with healthier food selection [25–27], which suggests that individuals with higher nutrition backlash may have lower nutrient profile scores. Future research should consider the association between nutrition backlash, label use, and nutrition knowledge as the latter is a key predictor of meaningful label use [23]. Interestingly, nutrition backlash was associated with a failure to follow recommendations on sunscreen use, a relationship that hints at the possibility of a larger underlying construct. For example, it is possible that nutrition backlash is just one part of a larger construct focused on health recommendation backlash, cancer prevention backlash, or perhaps backlash against authority. To examine this possibility, researchers should develop a set of items to represent these larger constructs and examine whether nutritional backlash is discriminant from each. An alternative interpretation of the relationship between nutritional backlash and sun-safe behaviors is that it could suggest the presence of an underlying negativity directed at public health messengers [50,51].

![Fig. 1. Confirmatory factor analysis of NBack6 (N = 399).](image-url)
However, in contradiction to previous studies, we found no significant relationship between fruit and vegetable consumption and nutrition backlash. It’s possible that participant confusion about the measurements used in the present study—in particular, what constitutes a cup—may have affected this result. Although brief instruments can be valid measures of longer fruit and vegetable measures [52], previous research has shown that different measurement systems may produce quite different self-reports of food consumption [53]. We should also note that when the original 11-item scale was used, nutrition backlash did replicate Patterson et al.’s [14] findings for fruit at the bivariate level, although that finding did not hold at the multivariate level.

The present study, then, suggested several possible directions for future research. First, researchers should attempt to replicate the results herein using an alternative measure of fruit and vegetable consumption. Second, although our studies confirmed Patterson et al.’s findings that nutrition backlash explains some of the variance in the public’s willingness to adopt dietary recommendations, they also suggested a benefit to revisiting the original scale. Our six-item version of the scale (NBack6) operated as a better-fitting measure than the full, original scale (NBack11), but that psychometric gain comes with a potential loss, in that the resulting scale focused almost entirely on low-fat diets. Third, several nutrition-related constructs that could be related to backlash were not measured, such as nutrition knowledge [23], food neophobia [54], and psychosocial predictors of fruit and vegetable consumption [55]. Fourth, nutrition backlash research could benefit from an investigation into the origins of backlash and its cultivation over time. Qualitative research, perhaps focused on high-risk groups identified in the present study or elsewhere (e.g., Monge-Rojas et al. [56] and Rosa et al. [57]), would be especially meaningful, in that it could identify the precursors of the disparity in perception and reaction to dietary recommendations.

As explicated, nutrition backlash seems to refer to backlash against nutrition information in general, rather than against a single set of recommendations (low-fat diets). Additionally, since the creation of this scale, public perception of dietary recommendations may have moved beyond a perceived focus on low-fat diets. This shift, and a surge of nutrition primitivism [58,59], suggests a complex perceptual geography that is far from static. Indeed, nutrition backlash is likely a dynamic construct that is best measured by a diverse set of items to fully capture its underlying variance. The diversity of the original scale may partially explain why NBack11 is significantly related to fruit consumption at the bivariate level, whereas our revised six-item scale, despite being more psychometrically sound, is not. This all suggests that future nutrition backlash research may benefit from a revised and expanded measure. The creation and validation of additional items has the potential to yield a psychometrically sound scale that also captures additional variance and is less sensitive to shifts in actual or perceived dietary recommendations.

The results of the present study underscore three recommendations for government and public stakeholders. First, nutrition backlash should be routinely measured, and tracked, as part of a larger data collection effort. For example, the Health Communication and Informatics Research Branch of the National Cancer Institute has routinely measured cancer information overload and fatalism as part of the HiNTS [60], Nutrition backlash could be added to HiNTS, or to a similar data collection effort. Second, the higher levels of backlash observed for male, low-income, and non-white participants suggests there is a need for additional programming and interventions targeting these groups. Third, when constructing interventions and programs, both government and public stakeholders should consider whether they are trying to fill a knowledge deficit, counter a negative backlash, or both. There is a tendency in interventions/programs to focus on providing knowledge alone [4]; the current data suggests that communicators may benefit from spending equal or additional time countering backlash.

Although not the primary focus of the present study, a number of interesting findings emerged for cancer information overload, cancer worry, and cancer fatalism. All three constructs were found to be discriminant from nutritional backlash and from each other. This is noteworthy as past research has used several of these constructs in the same study and assumed they are distinct [7]. The present results support that assumption. Discriminant validity aside, the present results also revealed that prevention-oriented cancer fatalism is negatively related to nutritional outcomes, including fruit/vegetable consumption and looking at nutrition labels.

Limitations

The current research had several limitations. Participants were drawn from a single state, and therefore may not be representative of individuals living in other areas. Fruit and vegetable consumption can be measured in a variety of ways, and alternative measures than those used here may be more meaningful for participants. Finally, the present research was cross-sectional, and therefore causality could not be established between nutrition backlash and health outcomes.

Conclusion

Given the public’s perennial interest in health and dietary recommendations and the large amount of media coverage health and diet receive, there is a puzzling disconnect between dietary recommendations and the actual behavior of U.S. consumers. That disconnect likely has a variety of causes, from the individual to the systemic, but one possible underlying mechanism is nutrition backlash. Research has shown that nutrition backlash has the potential to explain some demographic variance in the adoption of health and diet behaviors, representing a promising area for future nutrition research. The development of an enduring and diverse scale to measure nutrition backlash will help those researchers as they continue to explicate the causes of dietary disparities.

References


